The Fractal That Lives in Your DNA

by DiBeos

"The book of nature is written in the language of mathematics.”
— Galileo Galilei

Introduction

What if I told you that a simple function from number theory deter-
mines how resistant your DNA is to random mutations, and possibly
even the survival of life itself?


https://dibeos.net

But that’s not all. This function turns out to be continuous everywhere,
but differentiable nowhere. It is a fractal. One of the so-called patho-
logical functions in analysis, similar to the famous Weierstrass function.



But it actually looks like a pudding, or more precisely a European
dessert called blancmange. In fact, mathematicians describe this frac-
tal as a blancmange-like curve. But more on this later. ..

Before starting, I just want to say that we, the DiBeos, are not biolo-
gists. And in this PDF we will be focusing on math, so if you find any
imprecision when we talk about biology, you can check the research pa-
per that this document is based on for precise biological concepts.

Let’s start at the beginning:

The Genotype-Phenotype Mapping

Your genotype (loosely speaking) is your DNA sequence.

Your phenotype, though, is much more exciting. It is the manifestation
of your genotype: the observable traits that result from your genes,
like your eye color, your blood type, or the size of your brain!


https://royalsocietypublishing.org/doi/epdf/10.1098/rsif.2023.0169
https://royalsocietypublishing.org/doi/epdf/10.1098/rsif.2023.0169

There is a mapping where the domain is your genotype and the codomain
is your phenotype.



If the environment stays fixed around you (i.e. constant temperature,
nutrition, stress, chemical exposure, and so on), this mapping behaves
like a function, but it’s not one-to-one, it is not injective.

Many different genotypes can lead to the same phenotype. And that’s
actually a good thing, because it creates stability in biological evolu-
tion. It allows nature to explore variations without breaking what al-
ready works.



There are two main types of genetic mutations:

1. Germline mutations, which happen in sperm or egg cells, and can
be passed on to children. So before you're born;

2. Somatic mutations, which happen in the body’s cells usually dur-
ing your lifetime.



Somatic mutations are usually the dangerous ones. They can lead to
diseases like cancer. But thankfully, our biology is built on a mathe-
matical system that provides a kind of stability against mutations.

This tendency for a trait to stay stable despite mutations is called phe-
notype robustness. Mathematically, it can be expressed as the average
probability p, that a single-character mutation of a genotype mapping
to a phenotype p does not change the phenotype p.

Phenotype robustness has a mathematical structure. Each genotype
(i.e. a string of letters over the set {A, C, G, T}) is a vertex. Two
genotypes are connected if they differ by a single mutation. In other
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words, if they differ in exactly one character. This structure is called
a Hamming graph: a high-dimensional graph where edges represent a
single mutation.

Let’s see a concrete example to illustrate the point:

Take the Hamming graph H(3, 4). Here, each vertex is a string of 3
letters over the alphabet {A, C, G, T}. The vertex set is written as
vV ={A,6C,QG, T}3 (the Cartesian product of {A, C, G, T} (the al-
phabet set) with itself 3 times), which means all possible combinations,
with repetition, to form strings of length 3.



Two vertices are connected by an edge if they differ in exactly one
position. That’s what’s called a Hamming distance of 1.

Using simple combinatorics, there are 4-4 -4 = 43 = 64 such strings.
And thus this graph has 64 vertices, each one representing a possible

genotype.



Note: If you’'d like to be the first to find out when we launch our very
first books and courses, sign up with your email address on our homepage,
dibeos.net.

Now, imagine that we don’t build the entire graph at once. Instead, we
build it incrementally, vertex by vertex, following a rule called lexico-
graphic order. In simple terms, that just means we order the genotype
the same way words are ordered in a dictionary (comparing letters
from left to right: AAA < AAC < AAG < ... <TTT).
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This way of adding vertices is like a bricklayer stacking bricks row by
row, and that’s why we call it a bricklayer’s subgraph of the full Ham-
ming graph.

At each step, we add a new genotype (a new vertex) and connect it to
the previous ones if they differ by a single character. In this growing
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structure, every added vertex reflects a new genetic possibility, and
every edge is a mutational path.

Bricklayer’s graphs are important in mathematics because they let us
study how properties of the Hamming graph emerge step by step, and
they surprisingly connect to number theory through the sum of digits
function.

Fun Fact
As you can tell this is just starting to scratch the surface of what kinds

of mathematics are involved in genes: graph theory, analysis, combi-
natorics, probability, number theory, and we can go on forever. I mean,
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organisms are basically walking math.

But, wouldn't it be fun to actually know a bit more about your own
genes? To see all of this math in action?

A couple months back we were approached by the company AD-
NTRO, who gave us the opportunity to know just that. Thankfully,
there were no needles involved, just a container to spit into.

We really really loved this entire process and the concept behind it.
A DNA test is something we’ve personally been wanting to do for a
while, so we were super curious to see the results.

When we got our results back... well, we were shocked! (watch the
video in our YouTube channel to see our reaction).
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We saw that there’s so much more you can learn than just ancestry.
What's your perfect diet? Which vitamins should you be taking? How
likely are you to get joint or muscle injuries? What diseases are you
prone to or are more protected against? And that’s just a small part of
it. I mean there is just a treasure trove of knowledge inside of you. It
even tells you if your genetics are predisposed to math abilities! Now
how cool is that?

Once you’ve done your DNA test, ADNTRO always upgrades the
features on their website so that you can stay up to date with new
research. You can find out more and more about your genes as science
moves forward, or as they upload new features.

If you've taken the test with another company, chances are they didn’t
give you some, if not most of these stats. BUT, don’t worry, ADNTRO
lets you upload your DNA results even if you've taken them with an-
other company.

They also don'’t sell or share your data, and you can download it at
any time and even delete it from their systems if you want to. So these
results are completely yours.

Honestly, there’s literally no better way to invest in yourself. Or, in-
vest in someone else by getting them the test kit as a gift. If you'd like
to find out more, click this link AND get 10% off by using the coupon
code DIBEOS to make sure you get that discount.

Let’s get back to the math now.

14


https://bit.ly/4gX3Nud
https://bit.ly/4gX3Nud
https://bit.ly/4gX3Nud

The Sum of Digits Function

The sum of digits function is actually very simple. For example, the
digit sum of the decimal number 1995 would be 1 +9 +9 +5 = 24.

All you need in order to define this function is a number i (or sequence
of digits) and a base b: s,(i)

For example:
$25)=14+0+1=2
(because the base is b = 2, so we need to write 5 in binary, which is 101)
$10(123) =1+2+3=6
(because the base is b = 10)

The thing is, we don’t actually have strings of digits in our DNA case
study. Our genotypes are written with letters, like ACG or CTT. So
before we can use the nice math of Hamming graphs and digit sums,
we need a way to translate letters into numbers. The simplest trick is:
just assign each letter of the genetic alphabet to a digit. For DNA, the
alphabet has 4 letters, so we map them to the 4 digits {0, 1, 2, 3}.

Then the genotype ACG becomes the digit string 012, and CTT be-
comes 133. Now, we can treat every genotype as a base-4 number,
and that makes it possible to use combinatorics and number theory on
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them.
There is a theorem that says:

Theorem: Let G, C H(I, k) be a bricklayer’s graph, which is a
subgraph of the Hamming graph H(/, k) of strings with length / over
the alphabet of k letters, such that n is its the number of vertices.
Then the number of edges is:

n—1

|E| = Si(n) = }_ (i)

i=0

Where si(i) (little s) here is the sum of digits of the base-k representa-
tion of 7, and Si(n) (capital S) is the cumulative sum of all those digit
sums.

Ok, there’s a lot of information packed here. Let’s see a concrete ex-
ample to illustrate the beautiful mathematics behind it, and how this
directly influences your DNA.

Since we need to follow the lexicographic order, we start with AAA,
or 000. Next in line would be AAC, or 001. And we notice that we
can already establish our first connection (or edge), since they differ
by only one character. In fancy terminology, their Hamming distance
is 1.
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The next vertex is AAG, or 002, which has 2 edges (so far).

If we continue this process up to ACA, or 010, we notice that it has an
edge only with AAA, or 000, but not with the others that come before
it, since they differ by more than 1 character. However, it still can have
more edges connecting it with the later genotypes in the sequence.

Let’s go on and build this bricklayer’s graph up to n = 10 vertices, and
enumerate the edges.
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Just reminding you that this is a truncated version of the full Hamming
graph H(3,4). We also notice that this bricklayer’s subgraph Gigs C
H(3,4) has a total of 21 edges.

Just for you guys to know, we counted all of them one at a time in or-
der, which was not easy. But wait a second, why are we counting them
this way if we already have a formula to calculate the number of edges
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for any general bricklayer’s graph G, x?
Let’s just apply the formula instead:

(n =10,k =4and i € {000,001,002,003,010,011,012,013,020,021})

n—1

[E| = Sk(n) = )_ sk(i) | = |E| = 54(10) = ZO s4(f) =

i=0

(04042 +(0+0+3)+ (0+1+0)+ (0+1+1)+
FO0+142)+(0+1+3)+(0+24+0)+ (0+2+1) =
=21

We got 21 edges! Just as before.
That’s how this formula works.
Now, what happens when we also vary the number of letters k in our

alphabet and the length of each string? We get many different possible
graphs.
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You might ask: "ok, as a mathematical curiosity, altering the number of let-
ters in the genetic alphabet to more than 4 is pretty interesting, but we know
that we humans have only these 4 letters anyway. So, 1 guess this has no
practical application to real life, right?”

Wrong!

Scientists in synthetic biology have already engineered expanded al-
phabets. So, they’ve added new artificial DNA bases beyond A, C, G
and T. These expanded alphabets can produce proteins with new
amino acids, which allows us to explore entirely new forms of bio-
chemistry. That means new drugs, new materials, and even new life
forms designed in the lab. Not to mention that nothing prevents us
from finding future extraterrestrial forms of life with more than 4 let-
ters in their alphabet sets. We just don’t know yet...

Nice, but the real question here is: how can we measure the pheno-
type robustness that we talked about earlier? In other words, how can
we quantify this idea of stability despite mutations? So how can we
measure how stable it is?
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Well, first we need to define robustness mathematically.

Phenotype Robustness

Phenotype robustness (or simply robustness) is the probability that a mu-
tation does not change the phenotype (i.e. is neutral).

We calculate it using this formula:

2|E (Gy)]
l(k=1) |V (Gy)|

P (GP> -

The numerator counts all neutral mutational possibilities (since each
edge counts twice, once from each endpoint). The denominator counts
all possible single mutations.

So this fraction is exactly the probability that a random single muta-
tion has a neutral effect on your phenotype.
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Let’s see a quick illustration:

(n=10,|E|=21,|V|=10,1 =3,k =4)

2.21 )
- — 22~ 0.466
P=3@—1)-10 9

Therefore, for this small bricklayer’s subgraph, on average, about 47%
of single-letter mutations keep you inside the same phenotype.

Not super high, not super low. About half of mutations are completely
neutral here.

Now, let’s talk about the blancmange function and how it relates to phe-
notype robustness.

The Blancmange Function

Plot a “triangle wave” function:
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Then, for the interval [0, 0.5] create another sort of triangle (or “cor-
ner”), and do the same for the interval [0.5, 1] as well:

Then, we do it again for these 4 intervals ([0, 0.25], [0.25, 0.5], [0.5, 0.75]
and [0.75, 1]):
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We can actually continue this process infinitely, and get a fractal that
looks like a blancmange dessert.

Interesting! The iterative formula for producing this fractal is

fu() = Y 5 9(2)

j=0

Where ¢(x) is the distance of x to the nearest integer.

24



Let’s see a few iterations using this formula:

3 1 .
05) =) 5 ¢ (2-05)
j=0

1 1
= 55 ¢ (2°-05) + 7 ¢ (2'-05) +

1 1
+53 ¢ (2-0.5) + 5 ¢ (2°-05) =

=9 (05) + 50 () +39(2) +59(4)

Now, since ¢( something ) is the distance of something to the nearest
integer, we have that:

e $(0.5) = 0.5 (distance between 0.5 and 0 = distance between

5and 1)

1 0 (distance between 1 and 1 is zero)

¢
0.
°¢
¢
P4

(1) =
(2) =0 (distance between 2 and 2 is zero)
(4) =

0 (distance between 4 and 4 is zero)

Going back to calculating f3(0.5):
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£(0.5) = 0.5

Let’s do the same for f4(0.25):

£4(0.25) = 2 4>2J 0.25) = 210¢(20-0.25)+%4>(21-o.25)+

1 1 1

+57 9 (22-0.25) +530 (2°-0.25) + 59 (2*-0.25) =
1 1 1 1

=¢(025)+5¢(05) + ¢ (1) +5¢(2) +,¢(4)

Now, since ¢( something ) is the distance of something to the nearest
integer, we have that:

25) = 0.25 (distance between 0.25 and 0 is 0.25)
5

= 0.5 (distance between 0.5 and 0 = distance between

a
(1) = (distance between 1 and 1 is zero)
(2) = (distance between 2 and 2 is zero)
(4)

=0 (distance between 4 and 4 is zero)
Going back to calculating f4(0.25):

f2(0.25) =0.25+ 0.5 = 0.75

And so on...

This is very cool, but you might be asking yourself right now: “What
does it have to do with anything we’ve seen so far?!”
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And you’ll be surprised, because this is the highlight of this research!!!

What happens if we calculate the phenotype robustness p(G ), i.e.
the average probability that a single-letter mutation stays neutral for
a phenotype, across the bricklayer’s subgraph G, x (with alphabet size
k and n vertices), and then plot it against the normalized frequency of

genotype, given by log, (7)?

This plot shows how robustness evolves as we add vertices one by one
to the bricklayer’s graph, and the surprising result is that the curve fol-
lows a fractal, the blancmange-like function, squeezed between upper
and lower bounds.
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There are of course many more technical details behind this study,
and if you want to dive deeper you should check out the full paper
linked in the description. The authors carefully worked out upper
and lower bounds, the exact formulas, and biological interpretations
of these graphs.
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But here, our focus is on the mathematical result: contrary to all in-
tuition, the plot of robustness doesn’t form a smooth curve. It in-
stead gives us a fractal structure (so a curve that is continuous every-
where, but differentiable nowhere). More specifically, a blancmange-
like curve emerges “out of nowhere”, which shows that mutational
stability in genotype-phenotype maps follows the geometry of a frac-
tal squeezed between very precise upper and lower bounds.

Crazy how the most abstract mathematics keeps on appearing in the
weirdest places, huh?!

If you found this document useful let us know. If you found
typos or things to improve, let us know as well. Your feedback
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1s very important to us. We’re working hard to deliver the best
material possible. Contact us at: dibeos.contact@gmail.com
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