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Introduction

When looking at the RHS (:= right-hand side) of Einstein’s field equa-
tions, mathematicians and physicists see different things from each
other:

For the mathematician, this constant ( 8?—4(3) is just that, a constant. He’s

not interested in the fact that it involves two of the most fundamental
quantities in nature (i.e. the gravitational constant G = 6.67 x 10711 N -
m?/kg? and the speed of light ¢ = 299792458 m/s). So the mathemati-
cian sees it as nothing but a scaling factor that might as well be called
K = 87CT—4G, for example.



This tensor (Tw) is described as a rank-2 symmetric object (2 indices)
defined on a differentiable manifold.

It is defined pointwise. Its components vary smoothly with the coor-
dinates.



And it is covariant under coordinate transformation.

It does not depend on the local coordinate choice, it is an intrinsic ge-
ometric object.

The mathematician would also describe this tensor as a bilinear map-
ping, so a function that takes 2 tangent vectors at a point on the mani-
fold and returns a single real number.



This real number (the output of the bilinear map) is not interpreted as
energy or momentum, as a physicist would, but instead it’s viewed
mathematically as encoding a relation between directions on the man-
ifold at that point.

The mapping is smooth, and so we can differentiate it (V,T,,) and
contract it with other tensors (T, A} = By,).



Each one of the operations would produce a different result that di-
rectly influences the LHS (:= left-hand side) of Einstein’s equation, i.e.
the geometry and curvature of spacetime.



Now, the physicist would see the situation from a different perspec-
tive...

Each component represents something tangible: energy, momentum,
pressure, radiation. .. It tells you how matter moves, how it pushes and
pulls, and how it exchanges energy.



T,, encodes the state of a fluid, a beam of light, an electromagnetic
field, or even the vacuum, but always in terms of observables, mea-
surable quantities.

That’s a very common misconception: that only matter is capable of
bending spacetime and producing curvature. This tensor, T,,, tells us
a different story: stress (which is a generalization of pressure, includ-
ing shear and tension), energy (in the form of matter or radiation) and
momentum (that is, energy in motion or flow across space) are all ca-
pable of producing spacetime curvature.



Interestingly, this matrix encodes all this information, and if at any
moment you want to extract a piece of data from it, all you gotta do is
contract it with the appropriate basis vectors or tensors corresponding
to the physical quantity you're interested in:

One of the most elegant bridges between pure mathematics and physics
comes from a result called Noether’s theorem. It tells us that when-
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ever a system has a continuous symmetry, there is a conserved quan-
tity.

In the context of Einstein’s equation, if the laws of physics (and more
importantly, the geometry itself) remain unchanged when you shift
the coordinate system slightly in space or time, that’s called transla-
tional symmetry.

From this symmetry, Noether’s theorem gives us conservation of energy
and momentum, which means, for example, that the total energy in-
side a closed region of space doesn’t randomly disappear as you move
forward in time, and momentum doesn’t magically appear or vanish
as you move through space.
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As a concrete example, imagine a perfect fluid at rest. This (below) is a
volume of space that looks exactly the same everywhere and in every
direction. There’s no motion in space, but there’s always motion in
time.
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The energy density p is constant. The pressure p is the same in all
spatial directions. This uniformity gives us something very powerful:
translational symmetry. According to Noether’s theorem, this sym-
metry leads to conservation of energy and momentum.

But the story doesn’t stop there. Imagine rotating your coordinate sys-
tem (like spinning your frame of reference). If the geometry and phys-
ical laws remain unchanged under such a rotation, that’s rotational
symmetry. Noether’s theorem tells us that this symmetry leads to the
conservation of angular momentum.

Mathematically, this conservation law emerges when the tensor is sym-
metric: Ty, = Ty,
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Tor = Tio, Too = T», and so on. Basically, these triangular regions
(below) are the same.

The components encode information about shear stress, which tells us
how the motion in one direction affects neighboring layers.
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Other components represent momentum density in each direction. Think
of it as the amount of “push” (from either matter or radiation) con-
tained within a tiny volume of space, and in a specific direction.

And others give us the energy flux, i.e. how much energy is moving
through space, in each direction.

Notice that for us to have this kind of symmetry (i.e. rotational sym-
metry), the momentum density must be equal to the energy flux. It
means that the amount of energy flowing in a spatial direction must
be the same as the amount of momentum stored in that direction over
time. This balance is what ensures angular momentum conservation.

And lastly, in General Relativity, we deal with curved spacetime, which
means we must go beyond flat translations and rotations. Here, the
symmetry is much deeper: it’s called general covariance.

Indeed, Einstein has originally named his work “Theory of Invariance”,
referring to this type of symmetry, also known as diffeomorphism in-
variance. It means that the equations of physics (and the geometry
itself) look the same in any coordinate system you choose. This sym-
metry doesn’t lead to a global conservation law, but to a local one.
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Mathematically, it tells us that this tensor must satisfy a sort of geo-
metric divergence-free condition, expressed as V*T,, = 0. Intuitively,
it means that energy and momentum are conserved locally, from point
to point, even when the manifold is curved.

More concretely, imagine a narrow beam of light traveling in the x-
direction, like a laser. This is a classic example of what'’s called a “null
dust”: a stream of massless particles (such as photons) all moving to-
gether at the speed of light.

The tensor for this system stores information about how energy and
momentum are distributed and how they flow through spacetime.
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Too is the energy density present at that point in space.
To: is the momentum density in the x-direction.
Ty is the energy flux.

And Ti;, the pressure in the x-direction, so the amount of force per
unit area being exerted on a surface perpendicular to the x-axis.

All other components are zero, since the light beam is not moving
along the y- or z-directions, and there is no pressure or shear in those

directions anyway.

In flat space, for example, the local conservation condition becomes:

(flat spacetime)

> 'T,, =0 =

VAT, =0

— Ty +0' Ty, + 25+ 27 =0 —
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— Local Conservation of Energy (continuity equation for energy).
Here, Ty is energy density, and T is energy flux in the x-direction.

Forv = 1:

0 0
—ng + aTH =0| =— Momentum Conservation.

Where Tpy; is momentum density (in the x-direction), and Tj; is pres-
sure.

Forv=2orv = 3:
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.. P flow of energy, stress, or momentum in the y- and z-directions.
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If you found this document useful let us know. If you found
typos or things to improve, let us know as well. Your feedback
is very important to us. We’re working hard to deliver the best
material possible. Contact us at: dibeos.contact@gmail.com
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