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Introduction

The mathematical description of many physical systems relies on dif-
ferential equations. These can be ordinary differential equations (ODEs),
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partial differential equations (PDEs), or even a mix of both.

The main goal in studying these equations is to find their solutions.
But in practice, this is often extremely difficult — sometimes impossi-
ble. The truth is, all known methods for solving these equations de-
pend heavily on the specific structure of each individual equation. A
technique that works beautifully for one class of equations might be
completely useless for another.

It’s fair to say that, if we were able to solve all differential equations
in mathematical physics, we would, in principle, be able to predict
everything that has ever happened or will ever happen — assum-
ing no undiscovered “exotic” physics lies beyond our current theories
(which, to be honest, is totally possible).

The point, though, is that the equations that will be presented in this
file are incredibly powerful. Mastering them gives you the rare ability
to predict physical phenomena and even reconstruct events from the
early universe, long before human consciousness ever existed.

Of course, these theories are also interesting from a purely mathemati-
cal point of view. They are full of structure, symmetry, and beauty. But
beyond that, I like to think of them as glimpses into the deep truths of
what we call “reality”.

ODEs

An ODE of order n is an equation of the form:

F(x, y, y′, ..., y(n)) = 0

x is an independent variable and y is a dependent variable.
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1 Newton’s Second Law

It states that the acceleration (i.e., the rate of change of velocity over
time) of a particle is proportional to the net force acting on it, scaled
by its mass.
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2 Simple Harmonic Oscillator

This is a second order linear homogeneous equation with constant
coefficients. There is a huge list of applications of this equation in
Physics, Biology, Finances and Engineering.
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Theoretical physicists go as far as to say that: “everything in physics
is either a harmonic oscillator or can be approximated to one.”

3 Radioactive Decay Law

N(t) is the quantity of a radioactive substance, usually measured in
the number of atoms or in moles. And λ is the decay constant, which
determines the rate of exponential decay, and is measured in 1/s or
1/min or even 1/yr (since it’s inverse with respect to time).
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It expresses how an unstable atom decreases over time. Its solutions
are exponential functions, which means that the manifestation of the
force responsible for this phenomenon (called weak force) presents ex-
ponential decay:

4 Logistic Growth Equation
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Now we’re not tracking the number of particles anymore, but instead
the population of a closed system.

The first important thing to notice about it here is that this is the first
nonlinear equation we’ve seen so far, and this is so because it includes
a product of N with itself:

So, we have a term with the dependent variable squared.

The term
(
1 − N

K

)
produces a horizontal asymptote at N = K (called

the carrying capacity K).
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5 Friedmann Equation

This innocent-looking equation describes how our universe expands
or contracts over time, based on matter and energy content (ρ), spatial
curvature (K) and dark energy (Λ).
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a(t) is the scale factor and its derivative ȧ = da
dt is the rate of expansion.

PDEs

A PDE involves partial derivatives of a function with respect to multi-
ple independent variables. A general PDE of order n looks like:

F(x1, x2, . . . , xk, u, ∂x1u, ∂x2u, . . . , ∂n
xk

u) = 0

Here, x1, x2, . . . , xk are the independent variables (such as space and time),
and u = u(x1, . . . , xk) is the dependent variable (often representing a
field like temperature, pressure, or wave amplitude).

Key difference with ODEs: An ODE depends on a single independent
variable (like time), so it describes how something changes over time
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alone. A PDE depends on several variables (like space and time), and
describes how something evolves across space and time together. For
example, ODEs can model how fast a car is going, while PDEs can
model how a wave spreads through a pond.

6 Laplace’s Equation

u is a scalar field. Think of a scalar field, in 2 dimensions for example,
as a mapping that assigns a real (or complex) number at each point in
space – like temperature, for example.
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Another way to think about it is by assigning different colors to differ-
ent points according to their numerical values.

The Laplacian operator
(
∇2

)
measures how much the function at a

point differs from its surrounding values, i.e. is this point a peak, a
valley, or just flat compared to its neighbors?
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7 Poisson’s Equation

The only difference between Poisson’s and Laplace’s equations is the
term f (x, y). This function ( f ) is a source if it’s positive, and a sink if it’s
negative.

Since the right-hand side (RHS) of Laplace’s equation is zero, there
isn’t such behavior. Solutions to Laplace’s equation are commonly
called harmonic functions, and can model, for example, a region in space
with electrostatic potential, but no charges. Meanwhile, Poisson’s so-
lutions would include charges in it.
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8 Heat (diffusion) Equation

It describes how quantities, given by the scalar field u, spread out over
time.
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But it’s not limited to physics. It also describes the diffusion of nutri-
ents in tissues (like oxygen in capillaries), or even the prices of finan-
cial derivatives in the stock market – most notably through the famous:

9 Black-Scholes equation

It is mathematically equivalent to the diffusion equation under change
of variables. This equation helped build Wall Street empires and made
many quant traders multi-millionaires.
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10 Wave Equation

It says that the acceleration of a field u (so, its second derivative) at a
point is proportional to the spatial curvature. It can describe vibrations
of strings, sound waves, light waves, gravitational waves, and so on.
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11 Schrödinger Equation (Time-Dependent)

This equation tells us how a quantum state evolves in time. The wave-
function ψ = ψ(x, t) contains all the possible pieces of information that
are measurable about a particle or a system of particles.

16



The Hamiltonian operator is responsible for extracting information about
the particle’s total energy (both kinetic and potential).

Maxwell’s Equations
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These are obviously more than one, indeed 4 PDEs. And they are put
together because they explain all classical electromagnetism phenom-
ena in nature.

They are called Maxwell’s equations not just because he was the one
who complied them together, but because he discovered something
extraordinary, using mathematics alone:

If you combine them in a certain way, you get a wave equation, and
after calculating the speed of this wave, the numerical value matches
almost perfectly the speed of light in vacuum. The conclusion is:

“Light is an electromagnetic wave.”
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16 Klein-Gordon Equation

Now we are in the realm of Relativistic Quantum Mechanics.
Do you see this little square right here? Cute, huh?! It’s called the
d’Alembert operator, and it means this expression:
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So, the explicit version of this equation is this:

The Klein-Gordon equation is a generalization of our good old wave
equation, but this time we include relativistic mass effects.
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In other words, this equation takes into account the physical fact that
a particle’s mass can’t be treated as a fixed constant as it approaches
the speed of light. If the particle were to reach the speed of light, its
relativistic mass would asymptotically increase towards infinity.
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17 Dirac Equation

This that you are looking at right now is the very equation that unifies
Quantum Mechanics and Special Relativity!

You will also find it written on Paul Dirac’s tomb, in the Westminster
Abbey, in London, near the tomb of Sir Isaac Newton. And, by the
way, I (Luca) was fortunate enough to visit the site in person!

Anyway, this equation also introduces the concept of the spin of a par-
ticle in a very natural way, and it predicts antimatter.
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ψ here is a 4-component vector such that each component is complex.
So, this field contains 8 degrees of freedom.

18 Navier-Stokes Equation
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These, right here, are basically Newton’s second law applied to fluid
elements.

The left-hand side (LHS) represents inertial acceleration, i.e. the total
acceleration experienced by a fluid element.

The RHS represents

Pressure forces:
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Viscosity diffusion:

External forces:
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19 Continuity Equation

This equation has many, many, different applications, but in physics
it’s often used to express the fact that mass can’t just appear or disap-
pear. Any change in density over time

(
∂ρ
∂t

)
in a region must be due to

flow into or out of that region.
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An informal way of describing what this equation tells us is:

“Everything that comes in is equal to what comes out plus what stayed
in.”

20 Einstein Field Equations

This set of equations is physically interpreted as: “Spacetime tells mat-
ter how to move, and matter tells spacetime how to curve.”
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What creates what? Hard to say. . .

The LHS describes how spacetime curves, with Einstein tensor (which
combines the Ricci tensor and scalar curvature) and the cosmological
constant (responsible for the accelerated expansion of the universe)
multiplied by the metric tensor.

The RHS, instead, describes the distribution of matter and energy that
causes the curvature.
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21 Sine-Gordon Equation

ϕ is a scalar field. This is a nonlinear wave equation with periodic po-
tential (which is the sine term). It’s used to model waves in a periodic
medium, like a chain of pendulums attached by strings.
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One type of solution is called a soliton. This is a sort of pulse, but
with the extra condition that it’s stable and presents localized wave
packets that behave like particles and pass through each other without
changing shape.

22 Burger’s Equation
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This equation models a process called advection, which is a type of non-
linear transport.

Imagine dropping dye in a flowing river. As the water moves, the dye
is carried along with the current. That transport is advection.

The scalar field u is usually velocity.

ν is the viscosity of the fluid.

Notice how the RHS is similar to the heat equation. It’s called the
diffusion term ν ∂2u

∂x2 .
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When a shock wave forms, the profile of the scalar field u tends, over
time, to develop a sharp corner. This steep jump can be smoothed out
by increasing the viscosity of the medium.

Think of viscosity as internal friction at the molecular level. It resists
abrupt changes in velocity.

23 Korteweg-de Vries (KdV) Equation

This equation models shallow water waves (those that do not “break”,
yet), with long wavelengths.
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The function u = u(x, t) usually tracks the wave profile, i.e. the height
of the wave.

It has a nonlinear term 6u ∂u
∂x , since the function u is multiplied by its

own derivative with respect to horizontal position x. This nonlinearity
can be interpreted with the fact that the evolution of the wave depends
on its own amplitude. The higher the amplitude, the faster it changes,
and as a consequence the waves get more and more distorted.
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In a linear wave, in contrast, all parts of the wave travel at the same
speed. But in a nonlinear wave (like with the KdV equation right here),
the peak travels faster than the points in the bottom, because the speed
depends on the amplitude.

This causes the wavefront to tilt forward, so it becomes steeper over
time, like a water wave approaching the shore before it breaks. What
happens, then, is a process called “dispersion”, which just means that
different wavelengths travel at different speeds. That’s what the term
with the third derivative ... does. So, instead of steepening, the wave
wants to spread out and flatten.
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Try to notice this effect next time you go to the beach. . .

24 Euler-Lagrange Equation

It tells us how a system evolves in time by finding the path that min-
imizes the action. This is called the “Hamilton principle”. Instead of
using forces (like in Newton’s equation), it uses energies.

This equation assumes that the system is conservative, which means
that the total energy is conserved. It also assumes that the evolution
follows the principle of least action.
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q(t) is the “generalized coordinate” and q̇(t) is the “generalized ve-
locity”. The word “generalized” here means that it’s not limited to a
specific coordinate system, like Cartesian coordinates for example.

It really depends on the context:

For modelling a particle in 1D, q(t) is simply its position x(t). For a
pendulum, q(t) might be the angle θ(t) from the vertical axes. In a
rotating rigid body, q(t) can track any of the “Euler angles”: ϕ(t), θ(t),
ψ(t). And so on. . .

For modeling a particle in 1D, q̇(t) is its velocity ẋ(t). For a pendulum,
the angular velocity θ̇(t). And so on. . .
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Back to the Euler-Lagrange equation, the function L = L(q , q̇ , t) is
called the Lagrangian.

In classical mechanics of particles and rigid bodies, the Lagrangian is
the difference between the kinetic and the potential energies:

In more complex systems, though, the Lagrangian is defined as the
mathematical object that encodes the dynamics of the process. For in-
stance:

In Electromagnetism (EM) and Quantum Field Theory (QFT) we work
with the Lagrangian density L instead, which is a real-valued func-
tion of fields and their derivatives. It’s analogous to the Lagrangian
in classical mechanics, but instead of dealing with a finite number of
particles, it describes fields defined over all space and time.
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The Euler-Lagrange equation, then, for fields, take this form:

In classical EM, the Lagrangian density is:
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Here, Fµν is the “electromagnetic field strength tensor”. And this La-
grange density, when inserted into the Euler-Lagrange equations for
fields, naturally gives us the 4 Maxwell’s equations!

In QFT, the Lagrangian density L varies depending on the field and
on the interactions in it. For example, for a free Klein-Gordon scalar field,
this is the form of the Lagrangian density:

This Lagrangian density, when inserted into the Euler-Lagrange equa-
tions for fields, naturally gives us the Klein-Gordon equation!
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25 Hamilton-Jacobi Equation

This is a description of the same classical mechanics we’ve seen earlier,
but through a different pair of lenses.
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The main difference between the Lagrangian and Hamiltonian for-
malisms is what they treat as fundamental variables.

The Lagrangian formalism works with position q(t) and velocities q̇(t),
which is useful for analyzing systems with constraints and symmetries.
This is very useful when constructing phase portraits in dynamical sys-
tems, where the vertical axis is velocity and the horizontal one is posi-
tion.

The Hamiltonian formalism, on the other hand, reformulates the prob-
lem in terms of position q and momenta p. These two quantities evolve
according to the Hamiltonian function H(q , p , t), which is often inter-
preted as the total energy of the system (in some contexts), and it de-
termines the system’s evolution in phase space (so, the space of all
position-momentum pairs).
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The Hamilton-Jacobi equation goes even further: it doesn’t track tra-
jectories directly. It stores all system’s full dynamics into a single scalar
function called action S(q , t). Its gradients give us the momenta:

pi =
∂S
∂qi

(q , t)

Think of action as the core function that generates all the motion. Like
a sort of potential for all trajectories.

Physicists tend to prefer the Lagrangian formalism (but not always).
This is because it’s usually more intuitive and practical for solving
real-world problems. The equations of motion are usually easier to
derive from a Lagrangian, and it also fits very well with QFT when
using the principle of least action.

Mathematicians, on the other hand, often prefer the Hamiltonian for-
malism because of its abstract and geometric richness. It’s a more gen-
eral framework that gives a lot of insights into modern geometry. And
it’s especially useful when studying celestial mechanics, chaos theory
and canonical transformations.
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These are clearly not all the differential equations in Mathematical
Physics, and making a list of the top 25 most useful ones is a diffi-
cult challenge. With that said, we did our best to select the ones that
better represent the core of Mathematical Physics.

Please, let us know if we missed any: dibeos.contact@gmail.com

If you found this document useful let us know. If you found

typos and things to improve, let us know as well. Your feedback

is very important to us. We’re working hard to deliver the best

material possible. Contact us at: dibeos.contact@gmail.com
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