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Geometry started with intuitive Euclidean concepts, but underwent a
major transformation when we opened up the world of non-Euclidean
geometries. Let’s see what these concepts are and how they evolved.

We start with Elementary Geometry:

Plane Geometry

Plane geometry begins with trigonometry, which is the foundational
field for understanding angles and lengths in triangles. It deals with
concepts like sine, cosine, and tangent functions and their laws.

Basically, all kinds of concepts and theorems that describe relation-
ships between angles and sides of triangles, their areas, and relation-
ships with other polygons and circles.
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Spherical Geometry

The field studies figures on the surface of a sphere, and its basic ele-
ments are quite different from those of Euclidean geometry. The main
idea is that the shortest path between two points on a sphere lies along
a great circle. This would be analogous to a straight line, but on a
curved surface, like spherical triangles for example, which are differ-
ent from planar triangles because the sum of the interior angles of a
spherical triangle is greater than π, or 180◦.
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The excess (called the spherical excess) is directly related to the area
of the triangle on the sphere, and this leads us to the Girard theorem:
Area = R2 (A + B + C − π), where A, B, C are the angles of the spher-
ical triangle and R is the radius of the sphere.

The Hilbert Axioms of Geometry

David Hilbert was the one who rigorously reconstructed Euclidean ge-
ometry using a formal axiomatic system, so that the system of geometry
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was based on a foundation of pure logic. He established three notions
that are to be the start: point, line, incident, between, and congruent.

Hilbert’s axioms are a set of 20 assumptions, but they can be grouped
into five categories:

1. Axioms of incidence
2. Axioms of order
3. Axioms of congruence
4. Axiom of parallels
5. Axioms of continuity

The Parallel Axiom of Euclid

This is known as Euclid’s Fifth Postulate, often called the parallel pos-
tulate. It (loosely speaking) states that given a line, and a point not
on the line, there is exactly one line through the point that does not
intersect the given line, also known as its parallel.
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Oddly enough, even though there are other 4 postulates of Euclid’s,
this one took centuries of attempts to actually prove. And, rejecting it
leads to non-Euclidean geometries.

Non-Euclidean Elliptic Geometry

Now, if we replace Euclid’s parallel axiom, with the statement that, for
example, no parallel lines exist (or in other words that every pair of lines
intersects), we get a completely different, and yet entirely consistent
type of geometry.
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On the surface of a sphere and in this setting, lines are now great cir-
cles, the sum of angles is greater than π, there are no parallels, no infinite
lines, and no absolute distance to infinity.

This is especially useful in studying closed cosmological models, for ex-
ample.
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Non-Euclidean Hyperbolic Geometry

Let us now assert that through a point not on a given line, there exist
infinitely many lines that do not intersect the given line. So there can be
multiple parallels.

This means for example, that the sum of angles in triangles is now less
than π.
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Some models that represent hyperbolic geometry are the Poincaré disk
model and the hyperboloid model, where “lines” appear as arcs or curves,
but still obey the strict axiomatic rules.
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Now we move on to a different type of geometry, which is:

The Applications of Vector Algebra in Analytic Geometry

The applications of Vector Algebra in Analytic Geometry lets us solve
geometric problems in both the plane and the 3-dimensional space. Points
can be now represented as vectors, and relations like lines, planes, dis-
tances, and angles, are translated into dot products and cross products.

Lines and Planes in Space

Lines and planes can be translated into 3-dimensional spaces using
vector notation.
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For example a line is described parametrically as

x⃗(t) = a⃗ + t⃗v

where a⃗ is a point on the line and v⃗ is its direction vector.

A plane though, is defined by the scalar equation

(x⃗ − a⃗) · n⃗ = 0
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where n⃗ is a normal vector to the plane.

Vector algebra allows us to compute intersections, distances, and angles
between lines and planes.

Volumes

When it comes to geometric solids, in order to compute their volume
we have to use vector methods. One of the key tools is the scalar triple
product, for example:

V =
∣∣∣⃗a · (⃗b × c⃗

)∣∣∣
which gives the volume of the parallelepiped, spanned by three vectors
a⃗, b⃗, c⃗.
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Now onto Euclidean Geometry (geometry of motions):

The Group of Euclidean Motions

Euclidean geometry can be looked at through the lens of group theory.
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The symmetries which are fundamental to the Euclidean Space actu-
ally form a group of motions: translations, rotations, and reflections, and
their compositions, like the rotation in this (ξ, η) plane.

This way of looking at it, like a group structure, holds the idea that
Euclidean geometry studies properties which are invariant under rigid
transformations.

Conic Sections

Conic sections are curves that are formed by intersecting a plane with
a double cone. More rigorously, conic sections are “geometric loci which
are defined by a constant ratio of distances to a point (otherwise known
as focus) and a line (or directrix)”.
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Each conic can be expressed in a quadratic equation in Cartesian coor-
dinates

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0

We can observe conics in orbits of planetary motion, or in cross-sections
of reflective surfaces, or even as solutions to second-order differential equa-
tions.

Quadratic Surfaces

These are the 3D analogs of conic sections. They are defined by second-
degree equations in 3 variables:

Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + Gx + Hy + Iz + J = 0
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Depending on what the coefficients are, this equation can represent
different types of surfaces, such as ellipsoids, hyperboloids of one or two
sheets, paraboloids (either elliptic or hyperbolic), as well as cones and
cylinders, just as some examples.

Projective Geometry

Projective Geometry (Basics)

Basically speaking, it studies properties that remain invariant under
projective transformations.
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In Euclidean geometry, parallel lines never meet, but in projective ge-
ometry, all lines intersect, and parallels meet at a point at infinity.

Its basic setting is the projective plane, where points are represented us-
ing homogeneous coordinates, and the lines defined by linear equations
in these coordinates. It deals with principles of duality and projective
invariants.
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Projective Maps

These are transformations that preserve straight lines and cross ratios in
projective spaces, which are represented by invertible linear transforma-
tions on homogeneous coordinates.

Basically, under a projective map, distances and angles are not pre-
served, but properties like incidence (so, in simpler words, which points
lie on which line) are preserved.
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These mappings are represented by 3 × 3 matrices.

The n-Dimensional Real Projective Space

The n-Dimensional Real Projective space is formed by taking all the
lines through the origin in Rn+1. Each point is represented by homo-
geneous coordinates [x0 : x1 : . . . : xn].
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The n-Dimensional Complex Projective Space

The complex projective space CPn is defined the same way as its real
counterpart, as the set of all complex lines through the origin in Cn+1,
with points represented by homogeneous coordinates [z0 : z1 : . . . :
zn].
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Differential Geometry

Plane Curves

These are 2-dimensional smooth curves in a plane, defined by smooth equa-
tions or parametrizations in the plane. They’re studied for their geomet-
ric features, like curvature, inflection points, envelopes, symmetries, and so
on.
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Some examples include envelopes and caustics, evolutes, lemniscates, cassini’s
oval, lissajou figures, and many, many more.

Space Curves

Space curves are studied as smooth vector-valued functions r⃗(t) = ( x(t) , y(t) , z(t) )
in 3-dimensional space. Their geometric behavior is described using

22



curvature κ and torsion τ, which measure how the curve bends and
twists in space.

These quantities are captured by the Frenet–Serret frame, which are 3 or-
thonormal vectors: the tangent T⃗, normal N⃗, and binormal B⃗, that move
along the curve.

The Gaussian Local Theory of Surfaces

This area studies the intrinsic geometry of smooth surfaces in a 3-dimensional
space. Particularly, with a focus on how surfaces curve at each point.
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The geometry of a surface is described by the first and second fundamen-
tal forms, which hold the metric and curvature properties.

The central idea is Gaussian Curvature, denoted by K, which is defined
as the product of the principal curvatures κ1 and κ2.
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The amazing thing it shows is that the curvature is an intrinsic property
of the surface itself, and it’s not dependent on how it sits in space.

Gauss’ Global Theory of Surfaces
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Gauss’ global theory connects local curvature with the global topology
of a surface.

The main result is the Gauss–Bonnet theorem. It states that the integral
of the Gaussian curvature over a compact surface S is related to its Euler
characteristic χ(S): ∫

S
K dA = 2πχ(S)

Algebraic Geometry

Algebraic geometry overall is a very very large field, with countless
applications in other areas of mathematics. Its key concepts include
the degree of a curve, singular points, complex numbers in projective spaces
(like trying to avoid missing points at infinity).

The Projective Complex Form of a Plane Alge-
braic Curve
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This concept explains how to extend a plane algebraic curve to projec-
tive space over the complex numbers, which would form a projective
complex algebraic curve.

This is done by introducing homogeneous coordinates and rewriting
the equation as a homogeneous polynomial F(x, y, z) = 0, which makes
sure that points “at infinity” are included.
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We have to be working in a complex projective space though CP2, be-
cause this way we make sure that every algebraic curve becomes com-
pact and closed, thus avoiding the incomplete behavior that is seen in
affine coordinates.

The Genus of a Curve

Although there are certainly more accurate, but complicated ways of
describing it, the genus of a curve is a number that tells you how many
“holes” or loops the shape of the curve has when viewed as a smooth
surface over the complex numbers (for the image below, the genus is
p = 1).

28



For example, a sphere has genus 0, a torus has genus 1, and so on.

Diophantine Geometry

Diophantine geometry studies the solutions of polynomial equations
with integer or rational number coefficients. These are called Diophantine
equations.
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The main idea is to treat the equation as defining a geometric object, and
then ask whether it contains any rational points, as well as how many
of them.

There’s an interesting relationship between the genus of a curve and
its rational solutions. For example, curves of genus 0 (like conics) can
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have infinitely many rational points if they have even one, but curves
of genus ≥ 2 have, by Faltings’ theorem, only finitely many rational
points.

Analytic Sets and the Weierstrass Preparation
Theorem

Although analytic sets can have several definitions, we’ll look at them
as the solution sets of systems of holomorphic equations. These sets can
have singularities, which means that they are in need of local analysis
to understand their structure.
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The key tool is the Weierstrass Preparation Theorem, which gives a way
to simplify holomorphic functions near a singularity. It’s the local an-
alytic tool, which doesn’t resolve the singularity itself, but is a broader
step.

The Resolution of Singularities

It’s pretty straightforward, resolving singularities means transforming
a space with singular points into one that is smooth, while preserving
its essential geometric or topological structure.
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For example, when a curve has a singular point, like a place where it
crosses itself, that point can be “blown up”. Instead of treating it as
a single point, we replace it with an entire line that captures all the
directions in which the curve approaches. This process makes it easier
to study the curve near that point.

There are many methods to resolve singularities, but Hironaka’s theorem
guarantees that the resolution of singularities is always possible, but
only in characteristic 0.

The Algebraization of Modern Algebraic Ge-
ometry

What we mean by that are schemes, introduced by Alexander Grothendieck,
which generalize varieties by allowing local models given by rings, not
just coordinate functions.
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Geometries of Modern Physics

Geometries that go beyond Euclidean geometry. Things like manifolds,
tensor calculus, and differential geometry, which are used to model phys-
ical space, spacetime, and fields.

Unitary Geometry, Hilbert Spaces, and Elemen-
tary Particles

34



Unitary geometry and Hilbert spaces form the mathematical founda-
tion of quantum mechanics.

A Hilbert space is an ∞-dimensional complex vector space that is equipped
with an inner product. It lets us precisely formulate states, observables,
and evolution in quantum theory, for example.
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Quarks are an example of how unitary geometry and Hilbert spaces de-
scribe elementary particles. Each quark flavor corresponds to a vector in
a Hilbert space, and their charges, like isospin and hypercharge, deter-
mine how they transform under unitary symmetry groups.
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Pseudo-Unitary Geometry

Pseudo-unitary geometry is not a real geometry that we experience
with our everyday world, but it is the geometry of Einstein’s special
theory of relativity.
For example, if we use the real vector space R2 with a bilinear form
defined as:

B(u, v) := u1v1 − u2v2

then, the pseudo-orthogonal group O(1, 1), preserving the bilinear form,
is given by matrices involving hyperbolic functions cosh(α) and sinh(α).
These describe “boosts” like in special relativity.
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Vectors u ̸= 0 for which B(u, u) = 0, like u = (1, 1)T, are called
isotropic. They exist only in indefinite geometries, not in Euclidean
or unitary spaces.
In this space, the two axes behave oppositely under the inner prod-
uct. This creates a geometry where “isotropic” directions exist, which
means non-zero vectors with zero length.
Since this bilinear form has signature (1, 1), it means that one direction
contributes positively, the other negatively. This makes it a pseudo-
unitary space of Morse index 1.

Minkowski Geometry

Minkowski geometry is the geometric framework of special relativity,
where space and time are unified into a 4-dimensional spacetime with
an indefinite metric.
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The key object is the Minkowski space. It’s a vector space equipped
with the Lorentzian inner product

ds2 = −c2dt2 + dx2 + dy2 + dz2

Applications to the Special Theory of Relativ-
ity

This includes areas like Lorentz Transformations, the eigentime, Einstein’s
twin paradox, the Maxwell Equations of electrodynamics, and so on.
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Spin Geometry and Fermions

Spin geometry extends differential geometry to include spinor fields,
which are needed if we want to describe fermions.
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Fermions are particles like quarks and electrons that obey something
called the Pauli exclusion principle.

This framework is necessary for writing down the Dirac equation, which
is the relativistic wave equation for spin-1

2 particles.

For example, rotations in space can be described using quaternions,
which is a concept from Hamilton that encodes a rotation as a product
involving a special object Q, constructed from the axis of rotation and
the angle.
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The formula x′ = Q∨ x∨Q expresses how a vector x is rotated around
an axis e by an angle φ. The goal here is to show how this compact
expression, which works great in 3 dimensions, can be extended to
higher dimensions using Clifford algebras.

This sets up the bigger idea in spin geometry, which is that spinors
and fermions naturally live in this more general algebraic framework,
where rotations, geometry, and quantum behavior are unified.

Almost Complex Structures

An almost complex structure is a way of giving a real space of even
dimension a rule that behaves like multiplication by the imaginary unit
i. This rule is a linear map J that, when applied twice, gives minus the
identity.
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It lets us treat the real space as if it had complex structure, even if it
doesn’t come from actual complex coordinates.

Symplectic Geometry

Symplectic geometry studies even-dimensional manifolds that are equipped
with a closed, non-degenerate 2-form ω, called a symplectic form. ω holds
the phase space relations between positions and momenta.

Unlike Riemannian geometry, symplectic geometry lacks things like
distance or angles but is rich in dynamical structures.
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We of course can’t possibly show every single thing in geometry, but
these are some of the most important concepts. If we missed some-
thing let us know in the comment section below.

This file is completely based on the Oxford Users’ Guide to Mathematics:

Oxford Users’ Guide to Mathematics.

If you found this document useful let us know. If you found

typos and things to improve, let us know as well. Your feedback

is very important to us. We’re working hard to deliver the best

material possible. Contact us at: dibeos.contact@gmail.com

44

https://amzn.to/3GW3aTU
https://amzn.to/3GW3aTU

