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Imagine a kettle such that each point at its surface is associated with a unique vector 
from the origin of our randomly chosen coordinate system. We want to transform this 
kettle such that all the green arrows can be scaled (increase or decrease in length) and 
can be rotated (change its angle with respect to the axes of our coordinate system). 
However, we can make a specific transformation where all the green arrows are free to 
move around and change as they want, deforming the surface of the kettle, but at the 
same time there are 3 special (red) vectors that do not rotate, and the only thing that 
they are allowed to do is to change their lengths (increase or decrease it). These special 
vectors are called Eigenvectors of the transformation, and the amount of which they 
increase or decrease is called their respective Eigenvalues. 
 
 

 
 

 
Not all transformations have these special eigenvectors, and therefore eigenvalues, but 
some do. When a transformation does have these properties we say that it is a 
diagonalizable transformation. We will see shortly what it is supposed to mean, but 
first of all let’s see why these eigenvectors, with their respective eigenvalues, are so 
important.  
 

 



 
 
In dynamical systems, eigenvalues of the system's matrix indicate stability. For 
example, if all eigenvalues have negative real parts, the system converges to a stable 
state. Positive real parts suggest instability. 
 
 

 
 

 
 
 
In mechanical systems, they relate to oscillations and damping behavior. 
 
 

 
 
 



In data science and machine learning, eigenvectors of the covariance matrix identify 
the principal components of a dataset, which captures directions of maximum variance. 

In quantum mechanics, observables (e.g. energy, momentum, position, angular 
momentum, spin, and so on) are all represented by operators (matrices). Their 
eigenvalues correspond to measurable quantities, and eigenvectors represent quantum 
states (e.g. the energy eigenstates, momentum eigenstates, spin eigenstates, and so 
on). 

 

 

 

Eigenvalues can also correspond to natural frequencies of vibration in structures like 
bridges and buildings. Eigenvectors describe the mode shapes of these vibrations. 
 
Ok, but how do we calculate these special scalars and vectors? Well, let’s see a 
concrete example in 2 dimensions: 
 
We have the transformation matrix                    . 
 
It transforms vectors in the real plane into other vectors in the same real plane: 
 
 



 
 
 
Since we want to calculate the “special” vectors that do not rotate, but just get scaled by 
a specific factor, we need the following equation to be satisfied: 
 
 

  
 

 

Notice that this equation can be interpreted as: “after  acts on the vector   , it does 𝐴 𝑣
→

not change direction, just intensity (length) by a factor of  ”. λ
 
We can rewrite it as: 
 
 

 
 



 
 
 

Now, we introduced the identity matrix  in front of     –  acting on  . We had to do it in 𝐼 𝑣
→

𝑣
→

order to make sure that we are comparing “apples with apples”, i.e. that we have a 
vector quantity in the RHS and another vector quantity in the LHS of the equation.  
 
 

  
 
 
The equation above is actually a homogeneous linear system, and we will see why 
shortly. We want to find non-trivial solutions for this linear system. So, solutions that are 
non-zero vectors. 
 
 

 
 
 
If these non-trivial solutions exist, we say that the matrix    is singular, and 𝐴 − λ 𝐼( )
therefore: 
 

 



 
 
This is called the characteristic equation and it will give us the eigenvalues that we are 
looking for! 
 
 

 
 

 
 

 
 
We found the eigenvalues! 
 
Now, let’s go back to the equation we saw before in order to calculate the eigenvectors 
related to each eigenvalue   and  . λ

1
λ

2

 
 



 
 
 

Let’s find the eigenvector   of the eigenvalue  : 𝑣
1

→
λ

1
= 1 + 6 

 
 

 
 
 
We found the same expression of the -component in terms of its -component in both 𝑥 𝑦
equations. Now, we can build the general vector 
 



  
 

 
which spans the  space that is a line defined by the direction             , for all values  1𝐷

 . 𝑣
𝑦

∈ ℝ

 
 

 
 
 
Therefore, we can consider   , and as a consequence the eigenvector for the 𝑣

𝑦
= 1

eigenvalue   is  λ
1

= 1 + 6 

 

 
 
 



 
 
So, after the transformation  , all the vectors in the line defined by the direction  𝐴
 

were scaled by a factor of  : 1 + 6 ≈ 1. 22
 
 

 
 
 

What about the second eigenvector? The one for  ? λ
2

= 1 − 6 

 

Using the same process you can find  : 𝑣
→

2

 
 

 



 
 
So, we found out that there are 2 linear spaces that get stretched in the transformation. 
 
 

 
 
 
Awesome! But to be honest this is a very simple case, in which everything just turned 
out to be perfect. I invite you guys to invent a random square matrix and try to calculate 
its eigenvalues and eigenvectors using the same method. It is possible that you will run 
into some difficulties. But anyway, by the end of this document you will find 3 solved 
exercises to help you practice. 
 
 

 



 
 
Let’s see, for example, what happens when we change this transformation just a little 
bit. Replace  with : 3 − 3
 
 

 
 
 
Once again, we use the characteristic equation to find the eigenvalues: 
 
 

 
 
 
The eigenvalues, then, would involve the term 
 
 

  ,   ∆ = − 24 = 2𝑖  6         𝑖 : = − 1 ( )
 
 
and therefore the eigenvalues will not be real numbers. 



 
This is very important to notice, because, depending on the context, real eigenvalues 
can mean, and imply, completely different results from complex eigenvalues. For 
example, when applying it to the context of quantum mechanics (as you can see, that’s 
our favorite application of linear algebra, haha), things that are considered as physical 
observables (like energy, position, momentum, and so on) are all eigenvalues of special 
matrix transformations called Hermitian matrices (or operators) that act on eigenvectors 
called quantum states, or eigenstates. If the eigenvalues are not real, then they cannot 
be interpreted as observable quantities in a physical experiment.  
 
 

 
 
 
Going back to the mathematical theory of Eigenvalues and Eigenvectors, let’s recap the 
general process for computing these quantities, and let’s see some new important 
properties.  
 
First step (1): Solve the characteristic equation  
 
 

 
 
and find the eigenvalues  .  λ
 
Second step (2): For each eigenvalue  , solve the linear system of equations  λ
 



 

 
 

to find the eigenvectors  of the matrix  . These eigenvectors live in a subspace of  𝑣
→

𝐴 ℝ𝑛

(or of  , if we are studying the complex case). This subspace is called the null space ℂ𝑛

or kernel of the matrix  . 𝐴 − λ 𝐼( )
 
 

 
 
 
The kernel can also be seen as the space that has all its vectors mapped to the null 

vector  by the mapping  :  0
→

 ( ) 𝐴 − λ 𝐼( )
 



 

 
 
It’s important to notice as well that we are allowed to call the kernel a subspace – it is 
more than a set with no structure – because of the following 3 properties that it 
possesses: 
 

1.​  ; 𝐾𝑒𝑟 𝐴 − λ 𝐼( ) ∋  0
→

 

2.​  𝑣
1

→
 ,  𝑣

2

→
 ∈  𝐾𝑒𝑟 𝐴 − λ 𝐼( )        ⇒        𝑣

1

→
 +  𝑣

2

→
 ∈  𝐾𝑒𝑟 𝐴 − λ 𝐼( )

​ ​ ​     ​ (closed under addition)  ; 
 

3.​  𝑣
→

∈  𝐾𝑒𝑟 𝐴 − λ 𝐼( )   ∧   𝑐 ∈ ℝ        ⇒       𝑐 𝑣
→

 ∈  𝐾𝑒𝑟 𝐴 − λ 𝐼( )

​ ​   ​ (closed under scalar multiplication)   
 
 
Another important thing to notice is that (sometimes) different eigenvalues have different 
eigenvectors. However, there are instances in which 2 eigenvalues share the same 
eigenvector. 
 
 



 
 
 
For example, let’s use our recipe to find eigenvalues and eigenvectors of the matrix 
transformation : 𝐴
 
 

 
 
 
We conclude that the matrix  is not diagonalizable, and that the 2 eigenvectors are 𝐴
linearly dependent. Therefore (for all practical purposes), these 2 eigenvectors are the 
same: 
 



 
 

 
 
 
This kind of matrix is also called a defective matrix. 
 
Degeneracy is very interesting for practical purposes as well. In quantum mechanics, 
we can look for eigenvalues and eigenvectors for the Schrödinger equation: 
 
 



 
 
 

 is the Hamiltonian operator (so, a matrix) which gives the energy levels of the system, 𝐻
represented by its eigenvalues. Its eigenvectors are quantum states (or configurations) 

… , of the system. | ψ
1

>  ,  | ψ
2

>  ,  

 
Degeneracy in this equation would mean that multiple quantum states 

… , correspond to the same energy  , which means that a system | ψ
1

>  ,  | ψ
2

>  ,  𝐸
(like an electron in an atom, for example) can exist in different configurations while still 
having the same total energy. 
 
In order to practice calculating eigenvalues and eigenvectors let’s see 2 exercises:  
 
P.S.: We have a website where we post all of the PDFs and other materials related to 
the content of the DiBeos channel, as well as a research section where you guys can 
send us your personal research, or just interesting explanations of math principles, so 
that we can post in the website and let it available for others to peer review your work 
and comment on it. 
 
 
 
Exercise 1: 
 



 
 
Solution: 

 

 
 

 
 



 
 
 
Exercise 2: 
 

 
 
Solution: 



 
 

 



 
 

 
 
 
 
______________________________________________________________________ 
 
 
 
 
 



For more on eigenvectors and eigenvalues, check out the following excellent book: 
 
 

 
 

https://amzn.to/3F3amMY 
 
 
 
______________________________________________________________________ 
 
 
 
 
Important properties of eigenvalues and eigenvectors: 
 

●​ Number of eigenvectors: An  matrix has at most  eigenvalues (real or 𝑛 × 𝑛 𝑛
complex , counting multiplicities). 

 

●​ Eigenvectors Correspond to Each Eigenvalue: Different eigenvalues usually have 
different eigenvectors, but some eigenvalues can share eigenvectors. 

 

●​ Determinant and Trace Connection: 

The determinant of  is the product of its eigenvalues: 𝐴

 

https://amzn.to/3F3amMY
https://amzn.to/3F3amMY


The trace (sum of diagonal elements) is the sum of its eigenvalues:​
 

 

●​ Diagonalization Condition: If  has  linearly independent eigenvectors, it can be 𝐴 𝑛
diagonalized as: 

 
 

where  is a diagonal matrix of eigenvalues and  is a matrix whose columns are the 𝐷 𝑃
eigenvectors. 

 

●​ Defective Matrices: If a matrix does not have enough linearly independent 
eigenvectors, it is called defective and cannot be diagonalized. 

 
 

Special Cases and Tricks: 
 

●​ Symmetric Matrices  : 𝐴𝑇 = 𝐴

Always have real eigenvalues. 

Have orthogonal eigenvectors (important in physics and engineering). 

 

●​ Skew-Symmetric Matrices  : 𝐴𝑇 =− 𝐴

Eigenvalues are either purely imaginary or zero. 

 



●​ Orthogonal Matrices  : 𝐴𝑇𝐴 = 𝐼

Eigenvalues have absolute value 1 (they lie on the unit circle in the complex 
plane). 

 

●​ Diagonal and Triangular Matrices: 

The eigenvalues are just the diagonal elements. 

 

●​ Power of a Matrix and Eigenvalues: 

If  has eigenvalues  , then: 𝐴 λ
1
 ,  λ

2
 ,  ...

 has eigenvalues   𝐴𝑘 λ𝑘
1
 ,  λ𝑘

2
 ,  ...

 

●​ Eigenvectors Can Be Scaled: 

If    is an eigenvector of  , then any scaled version   (where ) is also 𝑣
→

𝐴 𝑐 𝑣
→

𝑐 ≠ 0
an eigenvector. 

 
 

 

Common Mistakes: 
 

●​ Forgetting to Check Linear Independence: 

If two eigenvectors are not linearly independent, you cannot diagonalize the 
matrix. 

 

●​ Not Checking for Complex Eigenvalues: 



If the determinant gives a negative discriminant, expect complex eigenvalues and 
eigenvectors. 

 

●​ Singular Matrices Always Have a Zero Eigenvalue: 

If   , then at least one eigenvalue must be zero. 𝑑𝑒𝑡 𝐴( ) = 0

 

●​ Eigenvectors Are Not Always Unique: 

If an eigenvalue has multiplicity greater than 1, it might have multiple 
independent eigenvectors (or not, in the defective case). 

 
 
Please, if you find this document useful, let us know. Or if you found typos and things to 
improve, let us know as well. Your feedback is very important to us. We’re working hard 
to deliver the best material possible. Contact us at: dibeos.contact@gmail.com 

mailto:dibeos.contact@gmail.com

	Special Cases and Tricks: 
	Common Mistakes: 

