How to Learn Analysis Effectively
by DiBeos

The very first thing to do when learning anything (not only Analysis) is to start with
intuition. You know, there will be 3 steps here.

1. Intuition
2. Abstraction
3. Practice

The second and third are more specific to Analysis, but the first one is just a rule of
thumb. When [ say intuition 1 mean a non-rigorous, or even “sloppy” explanation of the
concepts that you are trying to learn. Let’s see an illustration.

Say you wanna learn what the /imit of a function is. So, pick the function f(x) = % , for

example. Its graph looks like this:
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Notice how the curve gets closer and closer to the x-axis in the right region of the graph,
without ever touching or crossing it. A similar thing happens for the other parts of the



graph (top, bottom and left regions). The function gets closer and closer to the axes
without ever touching or crossing them.
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Intuitively, we can study how the points in the vertical y-axis behave as we move towards
the right (so, to + ©0) in the x-axis. Of course, the relation between the points in the x

-axis and in the y-axis is conditioned by the function f(x) = % . And we express it this

way:
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Let’s take the point x = 1. We see that its value in y is % = 1. Since we need to make

x — + oo we pick the next point on the right side of x = 1. Let’s try x = 3. Now
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y = % .Forx =10,y = -, and so on. We notice a pattern here. The more we move

towards the right in the x-axis , the more we end up moving down in the y-axis, towards
Zero.
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Interesting! So, we can conclude that, when x — + oo, y = 0. In other words,

lim i=0
X
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Let’s see what happens for x - — oo . Pick a point in x and we get a point f(x) in y. So,

the more we move to the left in x, the more we move up in y, towards zero again.




The conclusion is:
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Now we analyse what happens in the top region of the graph. If we pick a point in x > 0,
then there is a corresponding point in y > 0. We move x closer to zero, and y moves up.

We notice that the closer we get to zero in the x-axis, the higher is the value of y, without
any boundary.
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In other words:

lim i=+ oo
X

Actually, this equation is not completely right when expressed this way. In order to
understand what [ mean by that, let’s check out the function’s behavior at the lower part
of the graph. As x = 0 now, y - — 0.



So, how is it possible that
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Simple, it isn’t. In fact, one of the most basic theorems in Analysis is the one that says
that the limit at a point must be unique. So, since there is an ambiguity here, we say that
the limit of the function at this point does not exist:
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Instead, a more appropriate expression would be the following:
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With a plus sign on top of 0 so that we know that x tends to zero from the right side (the
positive side).

Meanwhile,
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I don’t know if you can remember yourself when you were just learning these concepts,
or if you are literally learning them for the first time right now, but this explanation, in
my opinion, very clearly illustrates what the limit of a function is, why we calculate it,
and what we can expect the result to look like. After creating this solid intuition behind
the concept of a limit, you, not only can, but MUST move to the second step, which is to
reshape it in an abstract/general way.

Analysis 1s heavily proof-based. So, eventually you do have to “mature” from just the
intuition to a deeper understanding of definitions, with all of their rigor. My advice is:
don't just memorize definitions; you need to DISSECT them. You need to ask yourself:

e Why is each condition necessary?
e What happens if I remove or alter a part of the definition?

In the beginning it will be time consuming, but I guarantee you that eventually it will
pay-off and you will become exponentially better at it. Reading proofs will be as easy as
reading any other book. But you need to pay the initial price of dissecting them first.
Especially when studying proofs, you need to identify the key ideas first, like why a
particular technique is chosen. I like to think about proofs as a narrative rather than just a
mechanical process. People can have different opinions about it, but I find it very useful
to study the proof of a theorem almost like a story that is being told to me. With all of its



“chronological events” in order. This way you can clearly understand the reason behind
every calculation or definition that is introduced in the middle of it, and also it helps you
to keep track of the final goal we are trying to achieve, i.e. keep in mind what you wanted
to prove in the first place.

Now that we have a good feeling of what the limit of a function is, and most importantly,
of what our goal is when calculating limits, let’s see its formal definition in terms of € and

0:

This will be written in mathematical language, of course, but I will “translate” it to
English:

‘For every tiny positive number € , no matter how small, there exists another tiny positive
number & , such that whenever x is within the distance § from ‘a’ (but not equal to a), the
value of f(x) is within the distance € from L.’

lim fix) = L
X—a
For.e.very fny such eqmvalently”
positive number ; hat

0| <6 = |fx)—L|<e

implies that

Ve > 0,36

there
exists

Take your time to digest it.



This is actually the particular case in which x tends to a finite
the limit is finite as well — the value L here . There are other 3

number a , and the result of
cases for the definition of

the limit of a function as well. They are the following: (the first definition is the one we

just saw)

Definition 1: (  finite and L finite) | im/fx) =L
Ve>0,36>0 s.t. O0<|x—a|<é6 = |fix)—L|<e¢

Definition 2: (a and L =+ o)

VM >0,36>0 s.t. O0<|x—a|<é6 = fx)>M
number

Definition 3: (a = + o0 and L finite ) | im fx) =L

Ve>0,AaN>0 s.t. x>N = |f(x)—L|<e¢

large positive
number

lim fix) =+ o0

Definition 4: (a =+ ccand L = + o0 )

X—>+00

VM >0,aN>0 s.t. x>N = f(x)>M

large positive | | large positive
number number

Notice though that just because the limit of a function, with x that tends to a finite value a

, 1s finite (so, L) — first definition —, it does not mean that the

function itself is continuous

at that point, i.e. it does not mean that f(a) = L. Let’s see a counterexample:

Consider the function
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The limitas x —» 1 is

lim fix) =12 =1

x—1

This is true for the limit to the right and to the left of x = 1, so this limit does exist.
However, when we look for the value of the function exactly at the point x = 1, we find
out that

Sy =3, so lim flx) # f(1)

fix)is not continuous atx = 1

In fact, the rigorous definition of a continuous function is not the same as the definition of
the /imit of a function. Let’s see the definition, using € and 9§, of a continuous function:



Let f: D - R,and let c € D. The function fis continuous at the point c if:

Ve>036>0 : |x—c|<é = |f(x)—flc)|<e VxeD.

An example of function fcontinuous at x = 1.
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Let’s see a quick example: f(x) = " is continuous for all real numbers.

J'/,\_',.x% /

N
o
-

Pick any small positive number € . Then, there will always be another small number &
such that for any point x € (— 1 — §,— 1 + ) — so, we will prove continuity for the
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point x =— 1, in this case — we have that e’ € ( eV — e , eV + e) . This implies

3
that e E(L— e,i+ e).
e e

Let’s do it in a more concrete way:

Pick any small positive number, say €: = 0.1 . Then, there will always be another small
number & (we need to find the value of § that will work fine with this particular choice of
€) such that for any pointx € (— 1 — 6,— 1 + &) — so, we will prove continuity for
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the point x =— 1, in this case — we have that e € (e(_l) —0.1,e + 0.1 ) .

3
This implies that e* € (% ~ 0.1, —+0. 1).

Let’s find such 6 :

fo-A-D] <e =

s — e(_l)S‘ <01 =

1
<01 = —01l<e¥——<01 =
e
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1 1
— —0l4+—<eS <01+ =
e e

1 1
= In (—0.1 +—) <x3<In (O.l +—>
e e

We know that x° = (x + 1)3 — 3(x + 1)2 + 3(x + 1) — 1. For small deviations
around x =— 1, we approximate:



¥r—-14+3(x+1)
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— In <—0.1+—> <—-14+3x+1)<In <O.l+—>
e e

In (—0.1+§) +1 In (o.1+§) +1
— . <x—(-1)<
1n(01+l>+1 1n(—01+§)+1
6 = min , —
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(Try to create numerical examples on your own and check how this definition of
continuity is indeed consistent)

So far we saw intuition, and abstraction. Now it’s time to move to the last step in the
process of learning Analysis: practice. What do I mean by that? [ mean actually creating
concrete examples of your own, where you can perform practical calculations to see if
your intuition and understanding of the rigorous definitions and theorems align with
problems involving numbers. Let’s illustrate it with

lim In(x) =— o
x-0"



The graph of f(x) = In(x) looks like this (see below). And we can clearly see how the
function, indeed, tends to — oo when x — 0" Notice that the function has no values for

x<O0.

lim In(x) = —

x—0t

Its rigorous definition is the following:
VM <0,36>0:0<x< 86 = In(x) <M.

Let’s see its behavior in the graph (see below). Pick any negative value M in the vertical
axis. No matter how “low” it is, there is always a possible choice of a tiny 6 such that you
can find a value x in the horizontal axis that gives us a value In(x) even lower than the
previously chosen M. Again, no matter how low M is, you can always find a point In(x)
lower than that.

Q_-.




Of course, looking at the graph it is kind of an obvious fact, but we need to show that
analytically, 1.e. rigorously.

For every M < 0, our goal is to find a 6 > 0 such that whenever 0 < x < §, we also
have (as a consequence) that In(x) < M. So, at the end of the day In(x) < M is what we
want to prove, and so we should focus our attention on it!

\
In(x) < M = (exponentiating both sides) e WM s x <l

So, what & should we pick for each value of M ? What about 6 : = e" 9 This is not the
only possible choice, but we will see now that this choice does work fine:

VM <0,38:=¢":0<x<e =x<e" = (akingInin both sides) In(x) < M

So, indeed, § : = e is one of the right choices that guarantees that no matter how low the
value of M is, there is always a 6 (small enough) that lets us find a point below M in the
vertical axis.

Notice that if instead the function were f(x) =— In(x),



f(x) = = In(x)

then this argument would fail. What do I mean by that? Let’s try to prove the same thing
for this new function:

VM <0,36 >0:0<x<d6=>—-—In(x) <M.

This is not possible.
Once again, we focus on what we actually want to prove: — In(x) < M .
-M

1
= X > =5
e

—Inx) <M = In(x) > M = " s e

So now, x > (something) , which is the opposite of what we got in the previous
example, which was x < (something else). This means that we cannot find smaller
and smaller values of & that satisfy any choice of M . Instead, we need to find /larger and
larger values of 6 to do so.



We actually found that

liE,n (— In(x))=— o

This last step is so important! I can’t emphasize enough how important it is to practice
with concrete calculations that you personally came up with. It really helps you to
solidify the concepts. And it is also strongly supported by neuroscience.

Our brains are malleable, even after we become adults, which means that connections in
our brains rewire themselves during learning. Basically, we physically alter the
connections inside of our brain and make a structural change when we’re learning. But,
an important term to remember when learning is cognitive load. In order to properly
process the information, you have to “organize, contrast, and compare” the ideas. So the
more you focus on problem solving, the better you will retain the information.

In other words, after grasping the intuition and the abstract rigor of a specific concept in
Analysis, you need to practice it with concrete problems over and over again. And this is
the best way of learning Analysis.

This content was a little different from what we usually do, so please let us know if you
guys enjoyed this mix of personal advice on how to learn specific subjects in
mathematics and mathematical physics, together with some technical examples along the
way.

Please, if you find this document useful, let us know. Or if you found typos and things to
improve, let us know as well. Your feedback is very important to us. We’re working hara

to deliver the best material possible. Contact us at: dibeos.contact@gmail.com
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