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The very first thing to do when learning anything (not only Analysis) is to start with 
intuition. You know, there will be 3 steps here.  
 
________________________________________________________________ 
 

1.​ Intuition 
2.​ Abstraction 
3.​ Practice 

________________________________________________________________ 
 
The second and third are more specific to Analysis, but the first one is just a rule of 
thumb. When I say intuition I mean a non-rigorous, or even “sloppy” explanation of the 
concepts that you are trying to learn. Let’s see an illustration. 
 
Say you wanna learn what the limit of a function is. So, pick the function  , for 𝑓(𝑥) = 1

𝑥

example. Its graph looks like this: 
 
 

 
 
 
Notice how the curve gets closer and closer to the -axis in the right region of the graph, 𝑥
without ever touching or crossing it. A similar thing happens for the other parts of the 



graph (top, bottom and left regions). The function gets closer and closer to the axes 
without ever touching or crossing them. 
 
 

 
 
 
Intuitively, we can study how the points in the vertical -axis behave as we move towards 𝑦
the right (so, to ) in the -axis. Of course, the relation between the points in the + ∞ 𝑥 𝑥
-axis and in the -axis is conditioned by the function  . And we express it this 𝑦 𝑓(𝑥) = 1

𝑥

way: 
 

 
𝑥→+∞
lim 1

𝑥

 
Let’s take the point . We see that its value in  is   . Since we need to make 𝑥 = 1 𝑦 1

1 = 1

 we pick the next point on the right side of  . Let’s try . Now 𝑥 → + ∞ 𝑥 = 1 𝑥 = 3
 . For  ,  , and so on. We notice a pattern here. The more we move 𝑦 = 1

3 𝑥 = 10 𝑦 = 1
10

towards the right in the -axis , the more we end up moving down in the -axis, towards 𝑥 𝑦
zero.  



 
 
 
Interesting! So, we can conclude that, when , . In other words, 𝑥 → + ∞ 𝑦 → 0
 

 
𝑥→+∞
lim 1

𝑥 = 0

 
Let’s see what happens for  . Pick a point in  and we get a point  in . So, 𝑥 → − ∞ 𝑥 𝑓(𝑥) 𝑦
the more we move to the left in , the more we move up in , towards zero again.  𝑥 𝑦
 
 

 



 
The conclusion is: 
 

 
𝑥→−∞
lim 1

𝑥 = 0

 
Now we analyse what happens in the top region of the graph. If we pick a point in , 𝑥 > 0
then there is a corresponding point in . We move  closer to zero, and  moves up. 𝑦 > 0 𝑥 𝑦
We notice that the closer we get to zero in the -axis, the higher is the value of , without 𝑥 𝑦
any boundary.  
 
 

 
 
In other words: 
 

 
𝑥→0
lim 1

𝑥 =+ ∞

 
Actually, this equation is not completely right when expressed this way. In order to 
understand what I mean by that, let’s check out the function’s behavior at the lower part 
of the graph. As  now, .  𝑥 → 0 𝑦 → − ∞
 
 



 
 
 
So, how is it possible that 
 

  ???? − ∞ =
𝑥→0
lim 1

𝑥 =+ ∞

 
Simple, it isn’t. In fact, one of the most basic theorems in Analysis is the one that says 
that the limit at a point must be unique. So, since there is an ambiguity here, we say that 
the limit of the function at this point does not exist: 

 
 

 ∃
𝑥→0
lim 1

𝑥

 
Instead, a more appropriate expression would be the following: 
 

   
𝑥→0+
lim 1

𝑥 =+ ∞

 
With a plus sign on top of 0 so that we know that  tends to zero from the right side (the 𝑥
positive side). 
 
Meanwhile, 
 



   
𝑥→0−
lim 1

𝑥 =− ∞

 
 

 
 
 
I don’t know if you can remember yourself when you were just learning these concepts, 
or if you are literally learning them for the first time right now, but this explanation, in 
my opinion, very clearly illustrates what the limit of a function is, why we calculate it, 
and what we can expect the result to look like. After creating this solid intuition behind 
the concept of a limit, you, not only can, but MUST move to the second step, which is to 
reshape it in an abstract/general way. 
 
Analysis is heavily proof-based. So, eventually you do have to “mature” from just the 
intuition to a deeper understanding of definitions, with all of their rigor. My advice is: 
don't just memorize definitions; you need to DISSECT them. You need to ask yourself: 

●​ Why is each condition necessary? 
●​ What happens if I remove or alter a part of the definition? 

In the beginning it will be time consuming, but I guarantee you that eventually it will 
pay-off and you will become exponentially better at it. Reading proofs will be as easy as 
reading any other book. But you need to pay the initial price of dissecting them first. 
Especially when studying proofs, you need to identify the key ideas first, like why a 
particular technique is chosen. I like to think about proofs as a narrative rather than just a 
mechanical process. People can have different opinions about it, but I find it very useful 
to study the proof of a theorem almost like a story that is being told to me. With all of its 



“chronological events” in order. This way you can clearly understand the reason behind 
every calculation or definition that is introduced in the middle of it, and also it helps you 
to keep track of the final goal we are trying to achieve, i.e. keep in mind what you wanted 
to prove in the first place. 
 
Now that we have a good feeling of what the limit of a function is, and most importantly, 
of what our goal is when calculating limits, let’s see its formal definition in terms of  and ϵ

: δ
 
This will be written in mathematical language, of course, but I will “translate” it to 
English:  
 
‘For every tiny positive number  , no matter how small, there exists another tiny positive ϵ
number  , such that whenever  is within the distance  from ‘ ’ (but not equal to ), the δ 𝑥 δ 𝑎 𝑎
value of  is within the distance  from .’ 𝑓(𝑥) ϵ 𝐿
 
 

 
 
 
Take your time to digest it.​
 



This is actually the particular case in which  tends to a finite number  , and the result of 𝑥 𝑎
the limit is finite as well – the value  here . There are other 3 cases for the definition of 𝐿
the limit of a function as well. They are the following: (the first definition is the one we 
just saw) 
 
 

 
 

 
 
 
Notice though that just because the limit of a function, with  that tends to a finite value 𝑥 𝑎
, is finite (so, ) – first definition – , it does not mean that the function itself is continuous 𝐿
at that point, i.e. it does not mean that . Let’s see a counterexample: 𝑓(𝑎) = 𝐿
 
Consider the function 
 



 
 
The limit as  is 𝑥 → 1
 

 
 
This is true for the limit to the right and to the left of , so this limit does exist. 𝑥 = 1
However, when we look for the value of the function exactly at the point , we find 𝑥 = 1
out that  
 

 
 
 
________________________________________________________________________ 
 
 
In fact, the rigorous definition of a continuous function is not the same as the definition of 
the limit of a function. Let’s see the definition, using  and , of a continuous function: ϵ δ
 



 

 
 

 

Let’s see a quick example:  is continuous for all real numbers. 𝑓(𝑥) = 𝑒𝑥3

 

 
 
Pick any small positive number  . Then, there will always be another small number  ϵ δ
such that for any point   – so, we will prove continuity for the 𝑥 ∈ − 1 − δ , − 1 + δ ( )



point , in this case – we have that . This implies 𝑥 =− 1 𝑒𝑥3

∈  𝑒(−1)3

− ϵ  ,  𝑒(−1)3

+ ϵ ( ) 

that  .  𝑒𝑥3

∈ 1
𝑒 − ϵ  ,  1

𝑒 + ϵ ( )
 
Let’s do it in a more concrete way: 
 
Pick any small positive number, say  . Then, there will always be another small ϵ: = 0. 1
number  (we need to find the value of  that will work fine with this particular choice of δ δ
) such that for any point  – so, we will prove continuity for ϵ 𝑥 ∈ (− 1 − δ , − 1 + δ)

the point , in this case – we have that . 𝑥 =− 1 𝑒𝑥3

∈  𝑒(−1)3

− 0. 1  ,  𝑒(−1)3

+ 0. 1 ( ) 

This implies that  .  𝑒𝑥3

∈ 1
𝑒 − 0. 1  ,  1

𝑒 + 0. 1 ( )
 
Let’s find such  : δ
 
 

 
 

We know that  . For small deviations 𝑥3 = (𝑥 + 1)3 −  3(𝑥 + 1)2 +  3(𝑥 + 1) − 1
around  , we approximate: 𝑥 =− 1
 
 



 

 
 
 
(Try to create numerical examples on your own and check how this definition of 
continuity is indeed consistent) 
 
________________________________________________________________________ 
 
 
So far we saw intuition, and abstraction. Now it’s time to move to the last step in the 
process of learning Analysis: practice. What do I mean by that? I mean actually creating 
concrete examples of your own, where you can perform practical calculations to see if 
your intuition and understanding of the rigorous definitions and theorems align with 
problems involving numbers. Let’s illustrate it with 
 

 
𝑥→0+
lim ln(𝑥) =− ∞

 



The graph of  looks like this (see below). And we can clearly see how the 𝑓(𝑥) = ln(𝑥)

function, indeed, tends to  when . Notice that the function has no values for − ∞ 𝑥 → 0+

 . 𝑥 < 0
 

 
 
Its rigorous definition is the following: 
 

. ∀𝑀 < 0 ,  ∃δ > 0 :  0 < 𝑥 < δ ⇒  ln(𝑥) < 𝑀
 

Let’s see its behavior in the graph (see below). Pick any negative value  in the vertical 𝑀
axis. No matter how “low” it is, there is always a possible choice of a tiny  such that you δ
can find a value  in the horizontal axis that gives us a value  even lower than the 𝑥 ln(𝑥)
previously chosen . Again, no matter how low  is, you can always find a point  𝑀 𝑀 ln(𝑥)
lower than that.  
 

 



 
 

Of course, looking at the graph it is kind of an obvious fact, but we need to show that 
analytically, i.e. rigorously.  
 
For every  , our goal is to find a  such that whenever , we also 𝑀 < 0 δ > 0 0 < 𝑥 < δ
have (as a consequence) that . So, at the end of the day  is what we ln(𝑥) < 𝑀 ln(𝑥) < 𝑀
want to prove, and so we should focus our attention on it! 
 

 (exponentiating both sides)  . ln(𝑥) < 𝑀 ⇒ 𝑒ln(𝑥) < 𝑒𝑀 ⇒  𝑥 < 𝑒𝑀

 

So, what  should we pick for each value of  ? What about  ? This is not the δ 𝑀 δ : = 𝑒𝑀

only possible choice, but we will see now that this choice does work fine: 
 

  (taking ln in both sides)    ∀𝑀 < 0 ,  ∃δ : = 𝑒𝑀 :  0 < 𝑥 < 𝑒𝑀 ⇒ 𝑥 < 𝑒𝑀 ⇒ ln(𝑥) < 𝑀
 

So, indeed,  is one of the right choices that guarantees that no matter how low the δ : = 𝑒𝑀

value of  is, there is always a  (small enough) that lets us find a point below  in the 𝑀 δ 𝑀
vertical axis. 
 

 
 
 
Notice that if instead the function were  , 𝑓(𝑥) =− ln(𝑥)
 



 

 
 
 

then this argument would fail. What do I mean by that? Let’s try to prove the same thing 
for this new function: 
 

 . ∀𝑀 < 0 ,  ∃δ > 0 :  0 < 𝑥 < δ ⇒ − ln(𝑥) < 𝑀
 

This is not possible.  
Once again, we focus on what we actually want to prove:  . − ln(𝑥) < 𝑀
 

  − ln(𝑥) < 𝑀 ⇒  ln(𝑥) >− 𝑀 ⇒  𝑒ln(𝑥) > 𝑒−𝑀 ⇒  𝑥 > 1

𝑒𝑀

 
So now,  , which is the opposite of what we got in the previous 𝑥 > (𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔)
example, which was . This means that we cannot find smaller 𝑥 < (𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 𝑒𝑙𝑠𝑒)
and smaller values of  that satisfy any choice of  . Instead, we need to find larger and δ 𝑀
larger values of  to do so. δ
 
 



 
 

We actually found that  
 

 
𝑥→+∞
lim − ln(𝑥) ( ) =− ∞

 
This last step is so important! I can’t emphasize enough how important it is to practice 
with concrete calculations that you personally came up with. It really helps you to 
solidify the concepts. And it is also strongly supported by neuroscience.  
 
Our brains are malleable, even after we become adults, which means that connections in 
our brains rewire themselves during learning. Basically, we physically alter the 
connections inside of our brain and make a structural change when we’re learning. But, 
an important term to remember when learning is cognitive load. In order to properly 
process the information, you have to “organize, contrast, and compare” the ideas. So the 
more you focus on problem solving, the better you will retain the information.  
 
In other words, after grasping the intuition and the abstract rigor of a specific concept in 
Analysis, you need to practice it with concrete problems over and over again. And this is 
the best way of learning Analysis. 
 
This content was a little different from what we usually do, so please let us know if you 
guys enjoyed this mix of personal advice on how to learn specific subjects in 
mathematics and mathematical physics, together with some technical examples along the 
way. 
 
Please, if you find this document useful, let us know. Or if you found typos and things to 
improve, let us know as well. Your feedback is very important to us. We’re working hard 
to deliver the best material possible. Contact us at: dibeos.contact@gmail.com 

mailto:dibeos.contact@gmail.com


________________________________________________________________________ 
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