
Cayley’s Theorem states that any group can be represented as a group of
permutations, or rearrangements of its elements.

We start with this diagram for the symmetric group . The nodes are numbered 1𝑆
3

through 6 in order to make it easy to talk about permutations.

The red arrows move from 1 to 2, 2 to 3, 3 to 1, 4 to 6, 6 to 5 and 5 to 4. The blue
arrows interchange the node pairs. And yes, even though they don’t have arrow heads
we will still call them arrows.

The permutations representing what is happening in the diagram look like this, and
show the exact same thing that is happening in the diagram.

This makes the entire group consist of 2 permutations.

One acts like a rotation. This permutation cycles the elements, behaving like a
120-degree rotation of an equilateral triangle. We’ll call that a red permutation. The
other acts like a flip. This permutation swaps elements acting like a mirror image. This
one is a blue permutation.

When you consider all possible combinations (or products) of the red and blue
permutations, you generate a group.

The group generated by the red and blue permutations has the same order (which are
six elements) and the same structural relationships among its elements as .𝑆

3



This means there's a one-to-one correspondence between the two. One-to-one, or
injective, relationship means each element in the first set (domain) is paired with a
unique element in the second set (codomain).

Because there’s a one-to-one correspondence the group generated by the red and blue
permutations is isomorphic to .𝑆

3

The diagram of which we drew earlier represents right multiplication.𝑆
3
 

The term "right multiplication" is used when the element b is multiplied to the right side
of a, denoted as a×b.

The diagram shows us all the possible ways to rearrange, or permeate, the objects,𝑆
3
 

but it’s less obvious than it would be if we used multiplication tables.

Let’s take as an example, with elements labeled 1 2 3 4 for simplicity.𝑉
4

1 is the identity element for any a. Each element is its own inverse.



Rows represent the first element in the multiplication (or the left factor). Columns
represent the second element in the multiplication (or the right factor).

When you look at a specific column in the multiplication table, you're seeing the results
of right
multiplication by the element at the top of that column.

For example, the column labeled 3 shows the results of for each element a in the𝑎 · 3
group.

If we analyze each case of column 3, we notice that the column is simply a reordering of
the numbers 1 through 4, a permutation.

The right multiplication by "3" effectively permutes the elements of the group.

From a multiplication table, we can create a permutation for each element of the group.
And vice versa, out of the permutations, we can make a multiplication table. They both
have to behave in the same way, and are therefore isomorphic.

And this is Cayley’s Theorem: every group is isomorphic to a collection of
permutations.

In order to prove that, say we have a group G with n elements.

The element labeled 1 is the identity element of the group.



Each cell at the intersection of row i and column j contains the product i×j, according to
the group operation. Each element is labeled k .

Thus, we have that .𝑖 ·  𝑗 =  𝑘

Now, we can create another table.

We have a similar thing happen, with row and column , the intersection of which is𝑝
𝑖

𝑝
𝑗

.𝑝
𝑘

The equation means that composing permutation with results in𝑝
𝑖 

· 𝑝
𝑗

= 𝑝
𝑘

𝑝
𝑖

𝑝
𝑗

permutation .𝑝
𝑘

Now, consider how the permutations treat the identity element from the original group.

If we take and apply it to 1, it will be the same thing as saying . And of course,𝑝
𝑘

𝑘 ·  1

anything times the identity element results in the element itself, so k.

The same thing is true if we take and apply it to 1 , which is the exact𝑝
𝑖
 ·  𝑝

𝑗
𝑝

𝑖
 ·  𝑝

𝑗
(1)

same thing as multiplying 1 by i and then j: .1 ·  𝑖 ·  𝑗

Since we saw that , it means that and will lead us to the𝑝
𝑖
 ·  𝑝

𝑗
 =  𝑝

𝑘
𝑝

𝑘
(1) 𝑝

𝑖
 ·  𝑝

𝑗
(1)

same answer. Since is and is k, we have .𝑝
𝑖
 ·  𝑝

𝑗
  𝑖 ·  𝑗 𝑝

𝑘
(1) 𝑖 ·  𝑗 =  𝑘



So, equations like from the table of permutations we made, is a faithful𝑝
𝑖
 ⋅ 𝑝

𝑗
= 𝑝

𝑘

representation of the original table i ⋅ j = k.

We provide a specific example, with elements 1 2 3 4, 1 being the identity.

We define each permutation as this:

Since it maps every element to itself𝑝
1
(𝑔) = 1 ·  𝑔 =  𝑔

The same can be done with and for example:𝑝
3

𝑝
4

Comment: Please, if you find this document useful, let us know. Or if you found typos and things
to improve, let us know as well. Your feedback is very important to us, since we are working
hard every single day to deliver the best material possible. For contacting us:
dibeos.contact@gmail.com


